e
SiETAETION Sraresenl B |

Approvea o1 ‘pc.m.: seicasel |
Dismounss Unnxared

RAUREESS

Model Checking for Securify Protocols

Will Marrero Edmund Clarke Somesh Jha

May 1997
CMU-CS-97-139

School of Computer Science
Carncgic Mcllon University
Pittsburghl’ B\ 15213

Abstract

As more resources are added to computer networksI and as more wndors look to the World Wide Web as
a viable marketplacel’ the importance of being able to restrict access and to insure some kind of acceptable
bchavior even in the presence of malicious intruders becomes paramount. People have looked to eryptography
to help solve many of these problems. HoweverD' cryptograply itsclf is only a tool. The sccurity of a systom
depends not only on the cryptosystem being usedlbut also on how it is used. Typicallyl’ rescarbiers have
proposed the use of security protocols to provide these security guarantecs. These protocols consist of a
sequence of messagesI' maty with encrypted parts. In this paperI’ w develop a way of verifying these protocols
using model checking. Model checking has proven to be a very uscful technique for verifying hardware designs.
By modelling circuits as finite-state machinesI' and examining all possible exceution tracesI’” modellecking
has found a number of errors in real world designs. Like hardware designsI' scouriy protocols are very subtlel
and can also have bugs which arc difficult to find. By cxamining all possible exccution traces of a sceurity
protocol in the presence of a malicious intruder with well defined capabiliticsI' w can determine if a protocol
does indeed enforce its security gnarantees. If notI’ w can provide a sample trace of an attack on the protocol.

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract
F33615-90-C-1465, ARPA Order No. 7597, and in part by the National Science Foundation under grant no. CCR-
8722633 .

The views and conclusions contained in this document are those of the anthors and shonld not be interpreted
as representing the official policies, either expressed or implied, of the National Science Foundation or the U.S.
Government.

9707

Keywords: computer sccurityl cryptographic protocolsI'formal verificationI'model checkingT partial
order.

1 Introduction

Sccurity for carly computers was provided by their physical isolation. Unauthorized access to these machines
was prevented by restricting physical access. The importance of sharing computing resources led to systems
where users had to authenticate themselvesT usually ly providing a name/password pair. This was sufficicnt
if the user needed to be physically at the console or was connected to the machine across a sccure link.
HoweverI” the cefficiency to be gained ly sharing data and computing resources has led to computer networksD
in which the communication channels cannot always be trusted. In this casel’ authesication information such
as the name/password pairs could be intercepted and even replayed to gain unauthorized access. When such
nctworks were local to a certain user community and isolated from the rest of the worldI' maw were willing
take this risk and to place their trust in the community. However' in order to be able to share information
with thosc outside the communityI this isolation wuld have to be removed. The benefits to be had by such
sharing have been enormousI” and the gains are demonstrated ly the growth of such entitics as the Internct
and the World Wide Web., NowI ery fewl if ay guarantees can be made about the communication links.
Numcrous protocols that take advantage of cryptography have been proposed that claim to solve many of
the sccurity issucs. The correctness of these protocols is paramountIespecially when we consider the size
of the networks involved and the desire of users to place confidential information and to allow for monctary
transactions to take place across these networks.

Typicallyl’ these protocols can be though of as a set of principals which send messages to cach other. The
hope is that by requiring agents to produce a sequence of messagesI' the securiy goals of the protocol can be
achicved. For examplel if a principalA receives a message encrypted with a key known only by principals A
and BI” then principalA should be able to conclude that the message originated from principal B. HoweverD
it would be incorrect to conclude that principal A is talking to principal B. An adversary could be replaying
a message overheard during a pervious conversation between A and B. Sol' depending on the securiy goal
of this simple example protocoll’ the protocol mgy or may not be secure. Becanse the reasoning behind the
correctness of these protocols can be subtlel’ a mmber of researchers have turned to formal methods to prove
protocols correct.

In order to concentrate on the sccurity of the protocol itself as opposed to the the sccurity of the
cryptosystem usedI'the vast majority of rescarch in this arca has made the following “perfect encryption”
assumptions.

¢ The decryption key must be known in order to extract the plaintext from the cyphertext.

e There is cnough redundancy in the cryptosystem that a cyphertext can only be gencrated using cn-
cryption with the appropriate key. This also implics that there are no encryption collisions. If two
cyphertexts arc equall’ they must have been gencerated from the same plaintext using the same key.

While the assumptions are obviously not trucl’ they arcl’ in practicel” reasonabl@hey are important, because
they allow us to abstract away the cryptosystem and analyze the protocol itself. In particularD if there is an
attack on this abstracted protocoll’ then the same attak exists when a real cryptosystem is used.

2 Related Work

Because these protocols tended to be short and not terribly complicatedl’ informal arguments were used to
prove their correctness. Howeverl' when running in parallell’ the belwior of these protocols is more difficult
to analyze. Asynchronous composition is already difficult to reason aboutI’ and adding issucs of who knaws
what and when makes reasoning about sceurity protocols extremely difficult. One recent approach taken
by Bellare and Rogaway and by Shoup and Rubinlis to try to provide a rigorons mathematical proof of
the correctness of a protocol [3'21]. They use propertics of pscudo-random functions and mathematical
arguments to prove that an adversary does not have a statistical advantage when trying to discover a key in
a session key distribution protocol.

Onc of the carlicst successful attempts at formally reasoning about security protocols involved developing
a new logic in which one could express and deduce security propertics. The carlicst such logic is commonly
referred to as the BAN logic and is due to BurrowsIAbadil’and Needham [6]. Their syntax provided

constructs for expressing intuitive propertics like “A said XI™ “A belices XI™ “K is a good keyI™ and “S is
an authority on X.” They also provide a sct of proof rules which can then be used to try to deduce security
propertics like “A and B belicve K is a good key” from a list of explicit assumptions made about, the protocol.
This formalism was successful in uncovering implicit assumptions that had becen made and weaknesses in
a number of protocols. HoweverI this logic has been criticized for the “protocol idcalization” step required
when using this formalism. Protocols in the literature are typically given as a sequence of messages. Use
of the BAN logic requires that the user transform cach message in the protocol into formulas about that
messagel’ so thatthe inferences can be made within the logic. For examplel'if the server sends a message
containing the key K,I'then that step might nced to be converted into a step where the server sends a

message containing A % pr meaning that the ky K, is a good key for communication between A and B.
An attempt to give this logic a rigorous scmantics was made by Abadi and Tuttle [2] and other attempts to
improve or expand the logic can be found in [22]). The BAN logic remains popular because of its simplicity
and high level of abstraction.

Recent work in the use of modal logics for verifying security protocols includes the development of a
logic that can express accountability [13]. Kailar convincingly argues that in applications such as clectronic
commercel it is accousability and not belicf that is important. Like their counterparts in the paper worldIh
one would like people to be held accountable for their clectronic transactions. This means that it is not
cnough for the individual participants to belicve that a transaction is taking place. They must be able
to prove to a third party that a transaction is taking place. Kailar provides a syntax which allows such
propertics to be expressed and a set of proof rules for verifying them. Similar to the BAN logicT'Kailar’s
accountability logic is at a very high level of abstraction. StilllKailar is able to use it to analyzc four
protocols and to find a lack of accountability in a variant of one of CMU’s Internet Billing Server Protocols.

An orthogonal linc of rescarch revolves around trying to antomate the process of verification when using
these logics. Craigen and Saaltink attempt this by embedding the BAN logic in EVES [7]. The automation
resulting from this experiment was not satisfactory. By building a forward-chaining mechanism and changing
some of the rulesI' they wre able to build a system that would try to develop the entire theory of a sct of
axioms (find the closure of a set of formulas under the derivation rules). Kindred and Wing went further by
proposing a theory-checker generator [14]. They provide a formal and well defined framework with assurances
about correctness and termination. In additionI’ their system generates theory beckers for a variety of logics
including BANT' AJTLOGT and Kailar’s accounability logic.

The third technique can be placed in the general category of model checking. The common approach
here is to model the protocol by defining a st of states and a sef, of transitions that takes into account an
intruderT’ the messages commnicated back and forthI and the information knovn by cach of the principals.
This statc space can then be traversed to check if some particular state can be reached or if some state
trace can be generated. The first attempt at such a formalism is due to Dolev and Yao [8]. They develop
an algorithm for determining whether or not a protocol is sccure in their model. HoweverT'their model
is extremely limited. They only consider scerecy issuesT'and they model only encryptionl’ deeryptionland
addingl’ heckingl® or deleting a principal name.

Mecadows used an extension of the Dolev-Yao model in her PROLOG based model checker [17]. In her
systemI'the user modcls a protocol as a set of rules that describe how an intruder gencrates knowledge.
These rules model both how the intruder can generate knowledge on its own by applying encryption and
deeryptionl’ and hov the intruder can generate new knowledge by receiving responses to messages it sends
to the principals participating in the protocol. In additionI’ the user specifies rewrite rules that indicate how
words arc reduced. Typicallyl' there are three rules used to capture the notion of equaliy and the fact that
encryption and decryption arc inverse functions. These rules are:

encrypt(XTdecrypt (XTY))» Y
deerypt(XTencrypt (XIY)}» Y
id_check(XI'X)— yes

To perform the verificationI’ the user supplics a description of an insccure state. The model checker then
scarchos backwards in an attempt to find an initial state. This is accomplished naturally in PROLOG by
attempting to unify the current state against the right hand side of a rule and thus deducing from the left

hand side what the state description for the previous state must be. If the initial state is foundT'then the
system is insccurel’ otherwise an attempt is made to proe that the insecure state is unrcachable by showing
that any statc that leads to this particular state is also unreachable. This kind of search often leads to an
infinite trace where in order for the intruder to learn word AT it must learn word BT and in order to learn
word BT it must, learn word CI' and so on. For this reason a facility for formal languages is included which
allows the user to prove that no word in a set, of words (or language) can be generated by the intruder. The
technique involves the following steps:

¢ Show that the word in question is in the language.

¢ Show that knowledge of any word in the language requires previous knowledge of another word in the
language.

¢ Show that the initial state does not contain any word in the language.

This initial model checker was still too limited. In particularT itdid not allow the modcling of froshly
generated nonces or session keys. The model checker evolved into the NRL Protocol Analyzer [18] which
allowed for these operations. In addition the model changed to include the states of the participants as
well as the state of the intruder while still maintaining the old paradigm of unifying against the right hand
sides of transition rules in order to gencrate predecessor states. Howeverl if arythingT the model has become
morc complexI’ and it still suffers from the most importa weaknesses of the original system. There is no
systematic way of converting a protocol description into a set of transition rules for the NRL Analyzer. The
model checker also relies heavily on the user during the verification much in the same way a theorem prover
relies on the user to guide it during the scarch for a proof. FinallyT' the algorithms used in the NRL Analyzer
arc not, guaranteed to terminatel’ and so a limit is placed on the mmber of recursive calls allowed for some
of the model checking routines.

Woo and Lam propose a much more intuitive model for authentication protocols [23]. Their model
resembles sequential programming with cach participating principal being modeclled independently. There
is an casy and obvious translation from the common description of a protocol as a set of messages to their
modecl. Their modecls are also more intuitive because they consider all possible execution traces instead of
considering just the set of words obtainable by the intruder. They are concerned with checking for what they
call secrecy and em correspondence propertics. The sccrecy property is expressed as a set of words (usually
keys) that, the intruder is not allowed to obtain. The correspondence propertics can express things of the
form if principal A finishes a protocol run with principal BT then principal B must have started (participated
in) the protocol run with A. Howeverl'they do not provide a gencral logic in which to formalize security
properticsI nor do they provide an automated tool. Instead they present a set of inference rules with which
you can prove correspondence assertions about a model [24]. In additionI'the description of their modell
while intuitivel’ is not, ery precise or formal.

Bolignano presents a model that is almost a middle point between these last two [4]. Like MeadowsD
Bolignano cmphasizes the algebraic properties of the intruder when trying to derive words. The state of
the intruder then is the st of words it can gencrateTI'while the state of the participants is determined by
the values of the variables that correspond to the protocol and their program counters. A number of rules
to rcason about what information is contained in what messages are provided which can then be used to
prove propertics about a protocol. In the example givenI’ all propertiesT including authdicationl” are gien
in terms of an invariant that must be proven. Because the invariant must be proven to hold for all protocol
stepsI” this can become uwieldy very quickly.

Other recent work in this arca has involved trying to use generic verification tools to verify sccurity
protocols. In [16]' Lowe uses the FDR model checker for CSP [12] to analyze the Needham-Schroeder
Public-Key Authentication Protocol [19]. Lowe succeeded in finding a previously unpublished error in the
protocol. The fact that he was able to use a generic model checker is promising as well. UnfortunatelyD
the CSP model for the protocol is far from straightforward. In additionT’ the model is parameterized ly the
nonces used by the participants. This mcans that it only models a single run of the protocol. In order to
prove the general protocol correct he must prove a theorem that states that the gencral protocol is insccure
only if this restricted version is insccure.

Leduc and others recently used the LOTOS language [5] and the Eucalyptus tool-box [9] to analyzc the
Equicrypt protocol [15]. What makes this an intercsting case study is the fact that the Equicrypt protocol
is a real system currently under design for use in controlling access to multimedia scrvices broadcast on a
public channel. They were able to find a couple of security flaws in this proposed system using these generic
tools.

Gray and McLean proposc encoding the entire protocol in terms of temporal logic [10]). Much like symbolic
model chockingl" they deseribe the model ly giving formulas that express the possible relationships between
variable values in the current state and variable values in the next state. This makes their framework more
formal than the othersPbut much more cumbersome as well. They provide a simple example and prove
a global invariant for this example. The foew subcases they consider are very straightforward but their
technique demands very long proofs even for the extremely simple example they present. They argue that
their technique could be automated but provide no tool for their systom.

Abadi and Gordon propose the spi calculusT' an extension of the pi caleulus with cryptographic primitiesT
as another model for describing and analyzing cryptographic protocols [1]. The spi calculus models commu-
nicating processes in a way that is very similar to CSP and CCS. The spi calculus provides constructs for
output on a channcll’ input on a dannell’ restrictionI’ compositionI testing for cquadl pairs and projoctionsD
encryptionl’ decryption and for branhing on equality to zero. What. scts the spi caleulus (and the pi calcu-
lus) apart, from other caleuli is the dynamic nature of the scope of restriction. The restriction operator can
be thought of as creating a new name to which only processes within the scope of the restriction operator
can refer. HoweverD one of these processes could output this new name outside the scope of the restriction
operator allowing another process to refer to it. In the pi caleulusD’ these new names can be though of as
private channcls. In the spi calculusT'the restriction operator is used to model nonces and keys. So farl
protocol models have been verified by comparing to a slightly altered model that is “obviously” correctl’ and
isT' thereforel’ at the same Lol of abstraction as the protocol modcl.

A more concrete and complete model is presented by Heintse and Tygar [11]. They view protocols as a
sct of agents modecled as non-deterministic finite state machines. The actions of a principal who must follow
the protocol depend on the local state of that principal and so are in some sense restricted. The actions of
adversaries arc not restricted by the protocol and hence they are allowed to perform any actions consistent,
with their current, knowledge. (In other wordsI' they cannot send messages that they cannot gencrate from
their current knowledge). Their model also includes a notion of beliefl' whih along with the sequence of sends
and receivesT' defines the local state of a principal. Security is then split into secret-security and time-security.
A model is secret-secure if all beliefs are universally valid. In particular if any principal ever belioves that
a message M is only sharcd among the principals in ST then it is alwys the case that if A knows M then
A € 8. A model is time-secure if all belicfs eventually expire. In other wordsT'if b is a belief held by a
principal 4 at cvent e then there is an cvent ¢’ such that b is not held at any cvent, following ¢’. The authors
go on to prove that the questions “Is P secret-sccure?” and “Is P time-sccure?” arc undecidable. While this
model docs a good job of capturing what one means by “sccurityl’™ the model scems too complex to be nsed
in practice.

3 Intuition

We also propose a model checking scheme for the verification of sccurity protocols and we make use of the
same “perfect encryption” assumptions. We propose a very intuitive model which capturcs the basic idea
of message generation and communication. Unlike other systemsIwhere the protocol must be encoded in
CSP or in term rewrite rulesTin our modell protocol definitions are casily translated into a scquence of
commands like SEND, RECEIVET'and NEWNONCE. In factD'it scems clear that this translation could cven
be done automatically from the simple notation used to describe protocols in the literature as sequences of
messages that occur during a run of the protocol.

Once we have a sequence of actions for cach of the participants we take their asynchronous composition to
get the full model of the protocol. There is one other unspecified participant which we call the intruder. The
intruder models an untrusted communication medinm as well as any malicious principals. When messages
are sent they can always be intercepted by the intruder. The intruder is also allowed to send messages while
impersonating a trusted principal. The intruder may cven be sclected as a participant in a protocol run.

In additionT" the iskruder will be allowed to compromise temporary sceretsI' sub as session keysI' whih are
generated during the run of the protocol and are not meant to be treated as permanent secrets. Care must
be takenI' haveverl' because it is unreasonable to allw the intruder to compromise temporary session koys
as soon as they are generated. In some sensel’ the participas should be allowed to make some use of the
key before it is allowed to be compromised.

A run of the protocol will then consist of some interleaving of actions from the participants and the
intruder. This particular run or #race can then be analyzed to determine if the security of the protocol was
compromised. In particular we can check if the intruder ever learns a sceret which is meant to be permanent
or if some principal A believes it has completed a run with principal BT while principal has not participated
in the run. In generall'a set of security requirements can be specified in some kind of logic and then the
trace can be checked to see if any of these requirements are violated. HoweverD to wrify that a protocol is
correctI all the possible runs must. be checked.

We can think of a trace as an alternating scquence of global states and actions. The global state will
consist of the local state of cach participant together with some global information like the set of sccret
informationI’ and whih principals have participated in which protocol runs. Since cach principal has a finite
number of actions it can take at any point in time (typically just one)I'then the number of possible next
states is finite. If we restrict oursclves to a sufficiently largel but: still finitc mmber of runsT' then the emire
state space will be finite and we can do depth-first scarch of the state space simply checking that no reachable
state violates the sccurity specification.

4 The Specification

There arc two kinds of properties that, we currently arc interested in. The first is a kind of sccrecy property.

We provide the model checker with a set, of terms which the intruder is not allowed to obtain. During the

verificationI w simply check that the intruder does not have possession of any of the terms in this set. This

is not as straightforward as it might scom because the information known to the intruder is typically infinite.

For examplel if the inruder knows a picce of data and a keyT it can repeatedly encrypt this data to produce
an infinite number of new terms.

The sccond property is a temporal property that Woo and Lam call correspondence [23]. In particularl’
we arc interested in checking that “if principal A belicves it has finished a protocol run with principal BT
then principal B must have begun a protocol run with principal A.” This can be generalized to “if cvent
X occursI’ then cent Y must have oceurred in the past.” (We will use Woo and Lam’s notation X — Y
to denote this.) HoweverD there is more to this propery than a simple temporal relationship. The relation
between Y events and X events must be a one-to-one mapping. More formallyT' the projection of awy trace
onto X cvents and Y events must, be derivable from the following grammar:

S — SzSyle

where the terminal symbols 2 and y represent, the events X and Y. In particularT if principalA belicves it
has completed two protocol runs with principal BT then principal 3 must have at least begun two protocol
runs with principal A. Each cnd of a protocol run on A’s part must be mapped to a scparate beginning of
a protocol run on B’s part.

In order to check for this kind of propertyl'we will augment the global state with counters. For cach
correspondence property X < Y we will maintain a separate counter which will keep track of the difference
between the number of Y events and X cvents. If this counter cver turns negative (ic. there are morce
X cvents than Y cvents) then the correspondence property will be violated at that point: (there will be no
onc-to-one mapping from X cvents to Y cvents). Converselylas long as the counter never goes negative
there is always a onc-to-onc mapping from X cvents to Y cvents.

5 Messages

TypicallyI' themessages exchanged during the run of a protocol are built up using pairing and cncryption
from smaller submessages. The smallest such submessages (i.c. they contain no submessages themsclves)

are called atomic messages. There arc four types of afomic messages.

e Keys arc used to encrypt messages. We make the “perfoct encryption” assumptionI which states
that the only way to obtain the plaintext from an encrypted message is by using the appropriate
decryption key. Keys have the property that cvery key k has an inverse k1 such that for all messages
mI'{{m}}r— = m. (Note that for symmetric cryptography the decryption key is the same as the
encryption keyl’ sok = k1)

Principal names arc uscd to refer to the participants in a protocol.

Nonces arc randomly generated numbers. The intuition is that since they are randomly gencratedl ary
message containing a nonce can be assumed to have been generated after the nonee was gencrated. (It
is not an “old” message.)

Data which plays no role in how the protocol works but which is intended to be communicated between
principals.

Let A denote the space of atomic messages. The st of all messages M over some set of atomic messages
A is defined inductively as follows:

e If a € Athen a € M. (Any atomic message is a message.)

e If my € M and my € M then m; -m2 € M. (Two messages can be paired together to form a new
message.)

o If m € M and key k € A then {m}; € M. (A message M can be encrypted with key k to form a new
message.)

Because keys have inversesI'we take this space modulo the cquivalence {{m}r}e-1 = m. It is also
important to note that we make the following perfect encryption assumption. The only way to gencrate
{m} is from m and k. In other wordsT'there do not exist messages m,m;, and my and key k such that
{m}r = my - myl and{m}, = {m'} implics m = m’ and k = k'

Lot B C M be a subsct of messages. The closure of B (denoted B)I represetting the sct of everything
that can be derived from BT is defined ly the following rules:

.IfmeDBthenmeD.
. I my € B and my € B then my -my € B. (pairing)

. ¥my -my € B then my € B and my € B. (projection)

B W N =

. m e D and key k € B then {m}, € B. (cncryption)
5. If {m} € B and key k~! € B then m € B. (decryption)

6 The Model

We now define the model formally by describing how the overall global state and the individual principal
local states are defined as well as by describing how actions update the state. The model consists of the
asynchronous composition of a set. of namedI’ commmicating processesT' cab augmented with a local store
in which to keep track of the current information it “knows"I’ and with a sct of bindings for the wriables
appearing in the process. Each principal involved in the protocol is modelled as one of these processes and
is described by a sequence of actions it is to perform and by the initial state of its local store. The initial
state of the bindings is assumed to be empty. One processT the igruderT is not completely spocified. Only
the initial state of its local storc is given and it is allowed to perform any “realistic” actions. For cxamplel
the intruder is not allowed to decrypt messages with a key it does not possess and it is not allowed to send
messages that it cannot, create with the information in its local store. But it is allowed to receive and send

messages arbitrarilyl’ possibly ikercepting messages intended for other principals or possibly impersonating
a trusted principal.

More formallyI’ cah principal is modelled as a 4-tuple (N, p, I, B)I’ where:
¢ N € names is the name of the principal.
e pis a process (similar in style to CSP) given as a sequence of actions to be performed.

e] C M is a set of all messages known (which can be produced) by the principal. M is the set of
all possible messages. Typically I will be infinite and in particularTit is closed under encryptionl’
decryptionI'pairing (concatenation)land projection. For exampleDif m,k € I then {m}x € I. For
some sct of messages JT' v will use J to denote the closure of J under these operations.

e B: wvars(p) — IT whercuars(p) is the sct of variables appearing in the process pI is a sct of bindings.

The global state is then maintained as the composition of the participating principalsTalong with the
intruder processI'a list of permancnt sceretsI'a list of temporary scerctsIand a set of counters indexed
by the pairs of principals participating in protocol runs. Morc formallyI'the global state is a 3-tuple
(I1, C;, Cy., Sy, S)T where:

o Ilis the product of the the individual principals and the intruder process. This product is asynchronousI*
yiclding an interleaving semanticsI' with the restriction that processes synbironize on messages.

e C;: names x names — N gives the difference between the number of times some principal with name
A has begun initiating a protocol with some other principal with name B and the number of times B
has finished responding to principal A. If a counter cver gets a negative value this means that B has
finished responding in a protocol with A (i.c. belicves A has participated in the protocol) without A
having taken part in the protocol.

e C,: names X names — N gives the difference between the number of times some principal named
A has begun responding to some other principal named B and the number of times B has finished
initiating a protocol with A. If a counter cver gets a negative value this means that B has finished
initiating a protocol with A (i.c. believes A has participated in the protocol) without A having taken
part, in the protocol.

e 5, C M is a sct of messages that are are considered safe scercts. These are the set of words that
the intruder is never allowed to know. This sct remains constant and usually includes things like the
private keys that principals use to communicate with a server.

¢ S; C M is a sct of messages that are are considered temporary sccrets. This is the set of new secrets
generated during the run of the protocol. These arce secrets which we assume the intruder may be able
to discover by some outside meansI' but whik the protocol should not, reveall’ sub as session keys.

The specific actions that a principal may perform can be divided into internal actions and communication
actions. The internal actions are performed asynchronously. Any principal is allowed to perform an internal
action and interleaving is used to model all possible behaviors when multiple principals can make a transition.
We define a transition relation — between principals such that A — B if and only if principal A can take
an action and become a principal that behaves like B.

Communication actions consist of send and receive actions. Each receive action can potentially change
the principal’s local storel’ reflecting aly new information it has “learned.” Communication actions can only
oceur in pairs and both principals make a transition simultancously. These communication actions arc also
interleaved with the possible actions of other automata.

In order for a communication action to take placel’ the message being ser must unify with the moessage
being reccived. A message s-msg from principal A = (A4,p, 14, B4) unifics with a message r-msg from
principal B = (B, ¢, Ig, Bp)T if there exist a substitutionog : vars(q) = L4 extending Bg (B C o)l sub
that B4(s-msg) = op(r-msg). If the messages unifyT’ then the follwing transitions can be taken:

(A, sEXD(s-msg).p’, Ia,B4) — (A,0,14,B4)
(B: RECEIVE(r'mSj)'(IJ’IByBB) - <B3(I”I,Bs”B)

where I = Ig U op(r-msg). Because we require that s-msg unify with r-msgl if there is alrcady a pair garT
val) in B for some var appearing in r-msgl'then the corresponding value in s-msg must be wal. Thus the
updates to B only add new bindings and never change previous bindings.

For the most part internal actions arc used to create or discover new information. For examplel
NEWNONCE is used to create a nonce. Nonces arc globally distinctI'and cach NEWNONCE action creatoes
a nonce that has not appeared up to that point in the protocol. The new nonce is added to the principal’s
local store. NEWSECRET works similarlyl’ except that, this is supposed to model gencrating a new session ky
which can then be used to encrypt, messages. More formally:

(A, NEWNONCE(var).p',I,B) — (A,p,I',B')
(A, NEWSECRET(var).p’, I, BY — (A,p,I',B')

where in both casesI” ifvel is the new value generated by the actionD thenl” = TU wal and B’ = Blvar « val].
If the action was a NEWSECGRET actionl’ then theS; is updated in the global state as well to Si = S; U val.

AdditionallyI’ the ikruder is allowed to perform a GETSECRET action which it can usc to acquire a seerct:
previously generated by a principal using NEWSECRET. This models the possibility of session keys being
compromised. It allows us to have two classes of sccretsI' those whih we assume to be “permancnt” like a
private key between a server and a trusted principall’ and those scerets whih are “temporary” such as session
keys. We need to allow the intruder to obtain scssion keys in order to allow for the possibility of replay
attacks which would allow the intruder to establish an old compromised key as a session key. Howeverl' w
also need to restrict the the usage of GETSECRET or clse the intruder would be allowed to compromisc a
session key immediately after it is gencrated and before it is ever used. For this reasonl’ w: only allow the
intruder to perform a GETSECRET action to compromise a key which has alrcady been established or used
in a protocol. Formallyl’

(Z,cETSECRET.Z,I,B) — (Z.9',I',DB)

where for some val € S, I’ = I U val and in the global state S; is updated to S} = S;—{wval}.

FinallyI’ w: have four special actions BEGINITTENDINITI'BEGRESPONDI" andENDRESPOND. These arc used
to mark the beginning and the end of a principal’s participation in a protocol. We use them to guarantee
that if the principal named A finishes the protocol (performs ENDINIT(B)) then the principal named B has
participated in the protocol (performed BEGRESPOND(A)). We do this by maintaining counters for cach pair
of principals participating in a protocol. More formallyl’

(A,BEGINIT(B).p , Jg, Ba) — (A,0',14,B4)

and we update the global state by setting the new value of C;(A4, B):

Cl(A,B) = Ci(A,B)+1 if C;(A,B) is defined
EAS it A B | otherwise

Similarlyl’
(B,ENDRESPOND(A).p', Is, Bg) — (B, ,Ip,Bgs)

and we update the global state by sctting the new value of Cj(4, B):

Ci(A,B)—1 if Ci(A,B)y>0
error otherwise

cit4.5) = {

The definitions for BEGRESPOND and ENDINIT arc identical except that C,. is updated in the global state
instead of C;.

The GETSECRET action may only be performed by the intruderI'while the rest of the actions may be
performed by any principal. The actions a particular honest principal may make are restricted to the sequence
of actions p that represent. its role in the protocol. The intruder has no such restriction and is allowed to
make any action at any timeI'provided that if it performs a SEND action with message mDit must be the
casc that m € I.

Recall that a trace is an alternating sequence of global states and actions and that we are interested in
checking all possible traces. ClearlyI® there are a finite mmber of next states for cach of the participants. In
additionI" while the iruder can generate an infinite number of messagesT' it is only allwed to send a finite
number because each SEND much match with a RECEIVE. Since the there arc a finite number of possible
next statesT e only consider a finite number of runsT w can perform a depth first scarch of the state space
to generate all possible traces. We then check that no reachable state violates the sceurity specification.
Pscudocode for this algorithm can be found in figure 1.

proc DFS (global-state)
push(global-statelS)
while (not empiy(S)) do
(HQ Ci5 C"a SM St) =]70[)(5)
if C;(z,y) < 0 for some = and y or
Cr(z,¥) <0 for some 2 and y or
s € Iz for some s € S, U S;
/¥ where Iz is the intruder’s information in I1. */
then report-error
L = next-states((IL, C;, Cy., Sy, St))
for cach I € L push(S,1)

Figurc 1: Modcl-checking algorithm

The remaining detail is how to maintain the local stores for the principals. The local store is accessed in
three places. FirstI' if principal{4,p, 14, B4) scnds a message mI” then w must insurc that m € I4. Sccondl
if the principal receives message mI then w must update 14 to I = T4 Um. FinallyT' w: check every global
state to sce if s € Iz for some s € S, U S;I" wherelz is the intruder’s local store. It turns that these local
stores arc infinite because of the closure operation. HoweverI'we never really need to compute the entire
closure; we need only determine if a particular message is in the closure. So it suffices to represent the
infinite sct with a finite sct of “gencrators.” This is the topic of the next section.

7 Normalized Derivations

Intuitively speakingl” ifB represents some set of information that is known by a principall® then the principal
also knows (can gencratc) all the information in B. In general B is an infinite sct; howeverl' w usually are
not, interested in the set of everything that a principal knowsI' but instead whether or not a specific message
2 € M can he generated by a principal. This leads us to the following definition.

Let # € B be a message. A derivation of x from B is an alternating scquence of scts of messages and
rule instances written as follows:

BB B BB, 5 By

where:

e B =D,

o €Dy

¢ Each rule instance R; is written as (I;, N;, O;) where:
- LCDh
= Biy1 =DB;U0;

— N; is one of the closure rules for B such that I; satisfies the premise of the rule and O; is the
corresponding conclusion.

For examplel letB = {{a}x - b,k7}. We derive 2 = a - b as follows:
1. By=B={{a}- bk}
2. Ro = ({{a}x - b},3, {{a}r, b})
3. By = {{a}k - b, k1, {a}e, b}
4. Ri = ({{a}r,k7'},5,{a})
- By = {{a}s - k7 {a}e, b0}
6. Ry = ({a,b},2,{a-b})
7. By = {{a}s - b, k71, {a}s,b,a,a- b} which contains x

ot

We would now like to introduce the notion of a normalized derivationI'but first we must introduce the
notion of shrinking rules and ezpanding rules by defining a metric jp : M — N, We then define a shrinking
rule to be a rule such that for cvery instance of the rule (I, N, O) we have:

max ju(m) > max ju(m)

AnalogouslyT’ anezpanding rule is a rule for which cvery instance (I, N,) we have:
ax < min p(m,
maxju(m) < miy j(m)
We can now define a normalized derivation as follows:
BB B...py Tegs By

is a normalized derivation if and only if for all 0 < ¢ < k, N; is an expanding rule implics N is an expanding
rule for all i < §j < k. In other wordsI’ all shrinking rules appear to the left of all expanding rules. Recall
that in our notationI'R; is the rule instance (I;, N;, O;)T

For examplel in our modell’ erwill define our metric g inductively as follows:

o pla)=1forallac A
. [l,(m,l . m,z) = Il(ml) + /l,(?'ﬂz)
o p{{m}) = p(m) +1

Note that p(m) is well defined when m = {mi }x, = {ma}e, I becanse the perfect encryption assumption
implics that m; = my and k; = k2. In the case m = my - ma = m} - m} cither m; is a substring of m{ or
m] is a substring of m;. Without loss of gencralityl’ assumem; = m] - b. Then it must be the case that
mb = h-my because we have m = my - mg =mf - b-my = m] - mb. Therefore

wm) = p(ma -ma) = p(my - b-my) = p(my - my).

10

The message derivation rules from section /refsectimessages can now be categorized. With these definitionsD
rules 3 and 5 arc shrinking rules and rules 2 and 4 arc expanding rules.
We now show that in our modcll'there is a derivation of 2 from B if and only if there is a normalized
derivation of from B. First we nced the following lemma.
R,] i . . -
Lemma 1: Let By = By 1—?-} B be a derivation of length 2 such that Np is an expanding rule and N is a
’

b4

sy . o . Ry _
shrinking rule. There there exists a derivation By =3 B} = ---B,_, =5 B), such that

1. M{,...,Ni_, arc expanding rules.

2. B() = B:)
3. B, C B
Proof:

Case Ny =2 and N, =3:
Let Ro = ({ma1,ma}, 2, {m1 - my}) and By = ({m] - mb},3,{m],m}})

Casc I m} -m) # my - my or m{ - mh € By
In cither caseI'm!} - mb € By and the new derintion is
1 2 0

Ry = R,
R, = Ry
It is clear that B) = B,.
Casc IL: m{ - mb =my -my and m} -m} € B,

If we also have m) = my and m} = sz‘ thenm) ,m.' S Bo C Bl. Thercfore Bz = Bl and we let the
1 2 1 2 =
new derivation consist only of

Ry = Ro

Otherwisel''we must, have that cither m, is a substring of m! or m/} is a substring of m;. Without,
1 1 1

loss of generalityl’ assumemy = m} - b. Then it must be the case that mj = b- my because we have

m=my -my =mj -b-my =m -m}. Then the new derivation becomes:

Ry = {({mi},3,{my,b})
Ri = ({b’ 7"'2}: zs{mlz})
RIZ = ({m'l’m2}725{ml mZ})

And we have that,
B!, =DByU {m'l,b} u {m’z} U{m; -ma} = By U {b}
Case Ny =2 and N; =35
Let Ry = ({mg,ma},2,{m; - my}) and R; = ({{m},k1},5, {m})

Onec of our assumptions about encryption is that given mI the only wy to gencrate {m}y is by knowing m
and k and using the encryption algorithm. Therefore there are no my and my such that my - my = {m}y.
Sol in this casc{m}, € By and the new derivation becomes

Ry = R
R = R

It is clear that, By = Bj.

11

Case Ny=4and N, =3:
Let Ry = ({m, k}, 4, {{m}}) and Ry = ({m; - m2},3,{my,m,})
Againl since w can’t have my -my = {m}:I' v must have that m; -my € By and the new derivation becomes

Ry = R,
Rl = Ry

Again'B, = B}.

Case Ny =4 and N; = 5:
Let Ry = ({m, k}, 4, {{m}}) and Ry = {{m'}w, k' 71},5,{m'})

Case It {m'}rr = {mh
In this casel’ w also have m’ = m and k' = kT thereforeB; = B, and so the new derivation is:

R o= R
ClearlyI'B} = B, = Bs.
Casc IL: {m'}w # {mh

It must, be the case that {m'}x € By so the following is a valid derivation:

Ry = R
1 = Ry

It is clear that B} = Bs.

Theorem 2: Let B € M be a set of messages. Then 2 € B if and only if 2 has a normalized derivation
from B.

Proof: If = has a normaliszed derivation from B then clearly this is a derivation and by definition € B.

For the other directionT letz: € B. Then there exists some derivation

r=B,%8B%...B_, ™" B,

such that z € By, Let S = {i|R; is a shrinking rule and 3j < ¢ such that R; is an cxpanding rule }. If S is

emptyl’ then I' is a normalized deriation and we are done. OtherwiseI’ w can induct on the size of S. Let

r =min S. By repctitively using Lemma 1T w can move R, to the leftI usil cither it is the leftmost rulel’ or
it is immediately to the right of another shrinking rule. Since the original derivation is finite and since cach

time we apply Lemma 1T ruleR, moves one slot, to the leftI’ w need apply Lemma 1 only a finite number of

times. If R, becomes the leftmost rulel’ then clearly there are no expanding rules to the left ofR,.. If R, is

now immediately to the right of another shrinking rule R,I' then there are still no expanding rules to the left
of R, because then there would be an expanding rule to the left of R, in the original derivation and so s € S

and s < r contradicting the minimality of ». Now we have a new derivation of #I'T"T'which is still finite.

Since the application of Lemma 1 does not add any new shrinking rulesT'S'T the newST satisfiesS’ = S —{r}.

Furthermore |8’} = |S| — 1T so ly the inductive hypothesis we can transform I' into a normalized derivation

of z.

Corollary 3: Given # € M and B € MT determining ifz € B is decidable.

Proof: By Theorem 2Tz € B if and only if & has a normalized derivation from B. We thercfore try to
find a normalized derivation or show that none exists. First we repeatedly apply shrinking rules to B = By
creating new scts B;. Since there are a finite number of rulesI' cadi rule creates a finite number of new wordsTD
cach smaller (by the metric 42) than cach of the words used as an input to the rulel’ andDj is finitc to beginl
there arc only a finite number of B;’s and hence we only apply shrinking rules a finitc number of times. Let
us call this final set B,. Since B, is the result of repeatedly applying all possible shrinking rules to BTz has

12

a normalized derivation from B if and only if it has a derivation from B, which uses only expanding rules.
FurthermorelI” the length of a minimal deriwtion of # from B, is bounded by p(z) since cach expanding rule
creates a words that are longer than the words used as inputs to the rule. Since there are a finite number of
expanding rules and B, is itself finitel’ w can simply try all possible sequences of expanding rules of length
less than or cqual to u(z) in a finite number of steps. Thercforel'this whole algorithm is guaranteed to
terminate.

In the proof of Lemma 1Tthe majority of cases displayed a kind of independence of rules. IntuitivelylD
indcpendence means that applying one rule does not increase the set of things that can be derived using
the other rule. More formallyl’a shrinking rule s is independent of an expanding rule e if for cach pair of
instances (I, s,0,) and (I,,,e,0,) we have onc of the following:

1. 0. NI, = ¢: The output of the expanding rule cannot be used as input to the shrinking rule. This is
the case for pairing and decryption and for encryption and projection.

2. O, C I,: The information gained by applying the shrinking rule was alrcady present when applying
the expanding rule. This could be the case when for encryption and decryption using the same key.

Note that this property applicd to almost all cases of Lemma 1 and that the only real work in proving
Lemma 1 came from the case of the pairing rule and projection rule because these are not independent.
The other pairs of rules were independent because of the “perfect encryption assumption.” In gencrall this
exchanging property (Lemma 1) need only be shown for pairs of rules that arc not independent.

8 Information Algorithms

While Corollary 3 proves the decidability of determining if # € BT it is an extremely incfficien algorithm.
In particularl’ emmerating all sequences of expanding rules of length pu(2) will yicld exponential complexity.
In practice howeverI' w: can scarch for a derivation of 2 from B, by using the structure of 2. Specificallyl’ w
have the following theorems:

Theorem 4: m; - my € D, if and only if m; - my € B, or m; € B, and m, € B,.

Proof: Assume m, -my € B, and my - my ¢ B,T thenm; - my must be in B, because of an expanding
rule. By assumptionl'm; - my € B,. To show that m; - my € B, can be derived from B, without using a
shrinking rule we take a derivation of my - my € B,T T'Tand usc theorem 2 to get a normalized derivation
I'". Now cither the shrinking rules appearing in I' arc redundant (i.e. they don’t add any new words and so
can be removed from the derivation) or we contradict the fact that B, was created by applying all possible
shrinking rules to B. In cither case the remainder of the derivation (and there must be some remainder
since we assume that m; - my € B,) must consist of expanding rules. In particular the last rule used in the
derivation must be an expanding rule and the only way that could be the casc is if it is rule 2 which would
require as its premise m; € B, and my € B,.

Now assumc that m; -my € B, or m; € B, and my € B,. Then it is clear by cither rule 1 or rule 2 that
my -my € B—,,

Theorem 5: {m}; € B, if and only if {m}; € B, orm € B, and k € B,.

Proof: Analogous to the previous theorem.

Putting all these together yields the basis for our scarch algorithm. As our sct of known messages
increasesI'we repeatedly apply shrinking rules and removing “redundant messages” until we get a sot of
“basic” messagesT' B,I'to which we cannot apply any shrinking rules. By redundant messagesI'we mean
messages that can be gencrated from the other messages in the sct using expanding rules. For cxamplel
when we apply rule 3 to get m; and my from m; - meT'we also remove m;y - my from B,. Howeverl when
applying rule 5 we must be carcful; when we generate m from {m}x and k=! we cannot remove {m}y from
B, unless k € B,. Psendocode for this algorithm is given in figure 2.

We now consider the complexity of inserting a new message m into our current sct of information B,
and generate a new sct of information B;. The only time there is any interaction between previously known
messages in B, and m is when we try to apply the decryption rule. The message m can have at most
|m| encryptions. For cach encryption'we scan B, looking for the inverse key for a total of |B,||m| time.
AnalogouslyI'm could contain at most |m| keys. For cach keyl" w must, check cach clement, of B, to sce if it

13

1 function add(I,m)

2 forcachiel
3 ifi={z}yandyl=m
4 then I = add(Z, z)
5 fyelthenI=1-14
6 fm=mz-y
7 then return add(add(Z,z)%)
8 fm={z},andy ' €]

9 thenify €1
10 then return add(7, z)
1 clse roturn add(I U m, z)
12 roeturn JUm

Figure 2: Augmenting the intruder’s knowledge

can now be decrypted. AgainI' this taks at most, |B,|jm| time. HoweverI” the newly decrypted message could
again be decrypted. The number of iterations is bounded by |B,|; thereforel’ the total time to generateBLT
is bounded by O(|B,|?|m|) and the size of B’ is bounded by O(|B,|?).

We know that any words in B, can be derived using only expanding rules. When we scarch to sec if
a word w is knownI' w can use theorems 4 and 3 to break it down into smaller picces which can then be
scarched recursively. For examplel ifw ¢ B, and w = {m}xT'then theorem 5 tells us that w € B, only if
m € B, and k € B,. Pscudocode for this algorithm is given in figure 3.

1 function in(I,m)

ifmel

then return true
fm=z-y

then return in(Z, %) and in(Z,y)
if m = {z},

then return in(Z,) and in(1,y)
return false

00~ O Ot i W

Figure 3: Scarching the intruder’s knowledge
When scarching for a derivation of w from B, we first check to soe if w € B,. This costs at most B,
time. If notI’ w break down w into two smaller picces and recursively check those peices. The total number
of recursive calls is bounded by the number of operations making up wlwhich is in turn bounded by |u|.
Thus the total time to check if w € B, is bounded by O(|B,||w)).
9 Verification Example

We now consider an example to illustrate how the model checker works. We consider the simplified Needham-
Schroeder protocol analyzed by Lowe [16] given below:
1. A—» B: ABA{N,. A}k,

14

2. B> A: B.A‘{ZV,,,.N;,}KA
3. A—>DB: A.B;{N),}KE

Here A is the initiator and B is the responder. A sclects a nonce N, and sends it along with its name
cncrypted with B’s public key to B. DB uscs its private key to decrypt this message and obtain N,. Now
D generates its own nonce Ny and sends it along with N, encrypted with A’s public key to A. A uscs its
private koy to decrypt this message and returns Ny, to B encrypted with B’s public key. B then uscs its
private key to verify that it has just received the nonce sent, carlier.

In order to use our model checkerI' w: first, isolate which actions are performed by A and which actions
are performed by B. We then write a short sequence of actions which make up cach participant’s role in
the protocol. The process description for principal A can be found in figure 4. The description for principal
B is similar. All that remains is to specify the initial state of cach principal’s local store. Each principalll
including the intruderl'knows the names of all three principals. Each principal also knows the public key
of cach of the three principals. Finallyl' cah principal knows it’s own private key. Figure 5 lists the initial
contents of the intruder’s local store which consists of the names of the three principalsT all three public kys
and it’s own private key.

((beginit (xp-var* b))
(newnonce (*var* na))
(send (*kvar* b)
(concat a
(kvar* b)
(encrypt (pubkey (*var* b)) (concat (*var* na) a))))
(receive (*var* b)
(concat (*var* b)
a
(encrypt (pubkey a) (concat (¥var* ma) (*var* nb)))))
(send (kvar* b)
(concat a
(*var* b)
(encrypt (pubkey (*var* b)) (*var* nb))))
(endinit (*var* b)))

Figurc 4: Process description for the initiator

(a b *intruder* (pubkey a) (pubkey b)
(pubkey *intruder*) (privkey *intruder*))

Figure 5: The intruder’s initial knowledge

The result, of the verification attempt can be found in figure 6. In just a fow sccondsI’ the model hecker
finds a violation of the security specification and generates a counter-example. Figure 7 provides an casier to
rcad description of the attack. The sequence of messages for fwo runs of the protocol (o and 8) arc provided.
The notation I(A) is meant to convey cither I impersonating A if on the left of the arrowT or] intercepting
a message meant for A if on the right of the arrow.

If we examine the counter-cxample we can sce what has happened. A initiates a protocol run with the
intruder. The intruder initiates a protocol run with B impersonating A and using the same nonce that A
used with the intruder. When B respondsI the inruder forwards this message to A. This moessage has the
format that A is expectingl’ namely its ovn nonce and a new nonce encrypted with A’s public key. A then
replics back to the intruder with B’s nonce encrypted with the intruder’s public key. The intruder can use

15

-«

its private key to decrypt this and it can now return B’s nonce encrypted with B’s public key. When B
receives this messagel” the protocol run is complete andB belicves it has finished a protocol run with A while
A docs not have the corresponding belief that, it has initiated a protocol run with B.

The above analysis is most casily scen in figure 7 by observing the following relationship between the o
run and the § run:

e The role of A in « is played by I in 8.
e The role of I in « is played by B in 8.

o Each message in 3 can be obtained from the corresponding message in o by replacing every oceurance
of I with B.

Thercforel’ thed run is identical to the o run except that B plays the role of the responder and I impersonating
A has played the role of the initiator.

"Lack of correspondence"

(B (BEGRESPOND A))

(A (BEGINIT *INTRUDERx*))

(A ((NEWNONCE (*VAR* NA)) (*NONCEx 245)))

(A

(CONCAT A *INTRUDER*

(ENCRYPT (PUBKEY *INTRUDER*) (CONCAT (*NONCE* 245) A)))

INTRUDER)

(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (CONCAT (*NONCEx 245) A))) B)
(B ((NEWNONCE (*VAR* NB)) (*NONCE* 260)))

(B

(CONCAT B A (ENCRYPT (PUBKEY A) (CONCAT (*NONCE* 245) (*NONCEx 260))))
INTRUDER)
(INTRUDER

(CONCAT *INTRUDER* A

(ENCRYPT (PUBKEY A) (CONCAT (*NONCE* 245) (*NONCE* 260))))

p)
(A (CONCAT A *INTRUDER* (ENCRYPT (PUBKEY *INTRUDER*) (*xNONCE* 260)))
INTRUDER)
(A (ENDINIT *INTRUDER*))
(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (*NONCE* 260))) B)

Figure 6: Verification Result

al. A o I AL{N,.A}x,
Bl. I(4) » B ABAN, A}k,
B2. B = I4) : B.A{N.N)x,
a2. I 5 A LA{N, N},
3. A o I AL{N)x,
B3. I(4) - B AB{N,}x,

Figure 7: Attack on Needham-Schroeder Protocol

Lowe suggests fixing the protocol by changing the sccond message so that the new protocol is as follows:

1. A5 B: AB{N, A}x,

16

2. B— A:B.A{N,.N;.B}x,
3. A> B: AB{Ny}x,

‘When we try to verify this protocoll lik Lowel w find no attack in a single run of the protocol. Because
no attack was foundI'the entire exhaustive search of the state space is performed and so the verification
process takes a bit longerI' but, it still completed in under a mimte.

10 Conclusion

Our model checker provides a number of advantages over other formalisms. The way we model a protocol
is very intuitive. We simply list the sequence of actions that cach participant takes in the protocol. Unlike
systems based on logicsI' w need not, interpret the beliefs that cach message is meant to conveyl and w can
gencrate counterexamples when an error is found. Unlike term rewriting approachesT w need not construct
a set of rewrite rules to model how an intruder can manipulate participants to gencrate new messages. We
simply model the protocol as a set of programsI® onc for cah participant in the protocol. Because we scparate
the algorithms that maintain the intruder’s knowledge from the state exploration algorithmsT w also never
nced to encode the intruder for our models.

The prototype model checker deseribed here has successfully discovered previously published crrors in
protocols. When run on correct protocolsI' the model hecker takes a bit longer because it ends up exploring
the entirc reachable state spacel’but for the examples investigated so farlthe system still torminates in
about a minute. We arc confident that this kind of exhaustive simulation is a feasible and useful technique
for verifying security protocols. Howeverlthere are still many cextensions that can be investigated and
implemented as well as additional experiments to be carried out.

Despite that, fact that there is a simple and straightforward translation from protocol descriptions in the
litcrature into our modelling languagel this process is tedious and prone to error. We arc currently developing
a better interface that would allow protocols to be specified exactly the same way they are specified in the
literature. We are also working on defining a logic in which to specify the propertics we are interested in
checking. We are investigating how to add other message operations such as XOR, and cncryption with
non-atomic keys. While these extensions should be possiblel it is not clear how these additions will affect,
the cfficiency of our decision procedure for message derivations.

Efficicncy is also an important concern. Currentlyl® the model hecker runs in an acceptable amount of
time. As we begin to increase the number of concurrent, protocol runsT and as w increase the complexity of
the model checker itsclfl’ w: can expect the exceution time to increase dramatically. Techniques that increase
the cfficiency of the model checker are necessary to combat this increase in complexity. In particularD it has
become clear that a number of operations can be thought of as independent of cach otherD in the sense that
they can be swapped in the execution trace without affecting the rest of the trace. This leads us to beliove
that partial order techniques [20] can be applied. The increase in efficiencyl’ case of usel’ and expressibilit
will prove uscful in analyzing more complex protocolsT including clectronic commerce protocols.

References

[1] M. Abadi and A. Gordon. A caleulus for cryptographic protocols the spi caleulus. In Proceedings of the
Fourth ACM Conference on Computer and Communications Securityl* April 1997.To appear.

[2] M. Abadi and M. Tuttle. A scmantics for a logic of authentication. In Proceedings of the 10th ACM
Symposium on Principles of Distributed Computingl’ pages 201-216T August 1991,

[3] M. Bellarc and P. Rogaway. Provably secure session key distribution—the three party case. In Proceedings
of the 27th Annual ACM Symposinm on Theory of Computingl’ pages 57-66T" 1993,

[4] D. Bolignano. An approach to the formal verification of cryptographic protocols. In Proceedings of the
3rd ACM Conference on. Computer and Communication Securityl’ 1996.

[5] T. Bolognesi and E. Brinksma. Introduction to the iso specification language LOTOS. Computer
Networks and ISDN SystemsT 14(1):25-59T 1987.

[6] M. Burrowsl’ M. Abadil' and R. Needham. A logic of authdication. Technical Report 39T DEC Systems
Rescarch Centerl' Ebruary 1989.

[7] D. Craigen and M. Saaltink. Using EVES to analyzc anthentication protocols. Technical Report TR-
96-5508-05I" ORA Canadal’ 1996.

[8] D. Dolev and A. Yao. On the sccurity of public key protocols. IEEE Transactions on Information
Theoryl' 29(2):198-2081" Matr 1989,

[9] H. Garavel. An overview of the Eucalyptus toolbox, In COST247 workshopl® June 1996.

[10] J. W. Gray and J. McLean. Using temporal logic to specify and verify cryptographic protocols (progress
report). In Proceedings of the 8th IEEE Computer Security WorkshopD 1995.

[11] N. Heintze and J. Tygar. A model for secure protocols and their compositions. IEEE Transactions on
Software Engineeringl’ 22(1):16-30T Jamary 1996.

[12] C. A. R. Hoare. Communicating Sequential Processes. Prentice Halll' 1985,

{13] R. Kailar. Accountability in clectronic commerce protocols. IEEE Transactions on Software Engineer-
ingl’ 22(3)T" Min 1996.

[14] D. Kindred and J. M. Wing. Fastl’ automatic hecking of security protocols. In USENIX 2nd Workshop
on Electronic Commercel’ 1996.

[13] S. LacroixI'J.-M. Boucquecaul'J.-J. Quistaterl'and B. Macq. Providing equitable conditional access
by usc of trusted third partics. In Buropean Conference on Multimedia Applications, Services, and
Techniques — ECMAST6T pages 763-782T" M 1996.

[16] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Tools and
Algorithms for the Construction and Analysis of SystemsT wlume 1053 of Lecture Notes in Computer
Sciencel’ pages 147-166. Springer-Vrlagl' 1996.

[17] C. Mcadows. Applying formal methods to the analysis of a key management protocol. Journal of
Computer Securityl’ 1:5-33 1992.

[18] C. Mcadows. The NRL protocol analyzer: An overview. In Proceedings of the Second International
Conference on the Practical Applications of Prologl’ 1994.

[19] R. Needham and M. Schrocder. Using eneryption for authentication in large networks of computers.
Communications of the ACMT 21(12):993-999I" 1978.

[20] D. Pcled. All from oneI® onc for alll' on modelticcking using representatives. In Proceedings of the Fifth
International Conference on Computer Aided VerificationI'Lecture Notes in Computer Sciencel'pages
409-423. Springoer-Verlagl' 1993.

[21] V. Shoup and A. Rubin. Scssion key distribution using smart cards. In Proceedings of Eurocrypil’ 1996.

[22] P. Syverson and P. van Oorschot. On unifying some cryptographic protocol logics. In Proceedings of
the 1994 IEEE Computer Society Symposium on Research in Security end Privacy. IEEE Computer
Socicty PressI My 1994.

[23] T. Y. C. Woo and S. S. Lam. A scmantic model for authentication protocols. In Proceedings of the
IEEE Symposium on Research in Security and Privacyl’ 1993.

[24] T. Y. C. Woo and S. S. Lam. Verifying authentication protocols: Methodology and example, In
Proceedings of the International Conference on Network ProtocolsI’ 1993,

18

